Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
S. Naveen, ${ }^{\text {a }}$ S. B. Benaka Prasad, ${ }^{\text {b }}$ M. A. Sridhar, ${ }^{\text {a* }}$ J. Shashidhara Prasad $^{\text {a }}$ and K. S. Rangappa ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Studies in Physics, Mansagangotri, University of Mysore, Mysore 570 006, India, and ${ }^{\text {b }}$ Department of Studies in Chemistry, Mansagangotri, University of Mysore, Mysore 570 006, India

Correspondence e-mail:
mas@physics.uni-mysore.ac.in

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.045$
$w R$ factor $=0.125$
Data-to-parameter ratio $=12.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1-PhenyIsulfonyl-1H-1,2,4-triazole

In the title compound, $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, the dihedral angle between the 1,2,4-triazole ring and the phenyl ring is $82.17(14)^{\circ}$. The geometry around the S atom is distorted tetrahedral. The molecules are linked by intermolecular C $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

1,2,4-Triazoles have attracted considerable attention in the fields of medicine and agrochemical research and also in materials science due to their unique structures and properties. Fluconazole, which contains two 1,2,4-triazole residues, is a powerful antifungal agent (Al-Soud et al., 2004). Substituted 1,2,4-triazoles have been found to exhibit anti-inflamatory, insecticidal, antifungal and antimicrobial activities (Boschelli et al., 1993). Sulfonamides are among the most widely used antibacterial agents in the world, chiefly because of their low cost, low toxicity and excellent activity against common bacterial diseases. In the light of the above information, the title compound, (I), was synthesized and we report here its crystal structure.

(I)

The molecular structure and the atom-numbering scheme of (I) are shown in Fig. 1. In (I), the dihedral angle between the

Figure 1

The molecular structure of (I), shown with 50% probability displacement ellipsoids.

Received 13 November 2006
Accepted 20 November 2006

Figure 2
The packing of (I), viewed down the b axis. Dashed lines indicate intermolecular hydrogen bonds.
$1,2,4$-triazole ring and the phenyl ring is $82.17(14)^{\circ}$. The geometry around the S atom is distorted tetrahedral, with the largest deviations being observed for the $\mathrm{O}-\mathrm{S}-\mathrm{O}$ and $\mathrm{O}-$ $\mathrm{S}-\mathrm{N}$ angles (Table 1). The $\mathrm{O}-\mathrm{S}-\mathrm{O}$ widening may be due to the repulsive interaction betwen the two short $\mathrm{S}=\mathrm{O}$ bonds. The $\mathrm{S}-\mathrm{N}$ bond distances lie within the expected range of 1.63-1.69 \AA. The reduction of the $\mathrm{N} 1-\mathrm{S} 6-\mathrm{C} 9$ angle to $103.86(10)^{\circ}$ from the ideal tetrahedral value is attributed to the Thorpe-Ingold effect (Bassindale et al., 1984).

The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). These hydrogen bonds links the molecules into chains (Fig. 2).

Experimental

1-Benzenesulfonyl-1 H -1,2,4-triazole was obtained by the condensation of 1,2,4-triazole with benzenesulfonyl chloride in the presence of triethylamine as the base. First, 1,2,4-triazole ($1 \mathrm{~g}, 14.4 \mathrm{mmol}$) was dissolved in dichloromethane $(10 \mathrm{ml})$ and cooled to $273-278 \mathrm{~K}$ in an ice bath. Triethylamine $(4.37 \mathrm{~g}, 43.2 \mathrm{mmol})$ was then added to the cold reaction mixture and the resulting solution was stirred for 10 min . Benzenesulfonyl chloride ($2.44 \mathrm{~g}, 14.4 \mathrm{mmol}$) was added to the reaction mixture which was then allowed to cool to room temperature and stirred for 5 h . The reaction mass was monitored by thin-layer chromatography. On completion of the reaction, the solvent was removed under reduced pressure and the residue was taken up in water and extracted with ethyl acetate. Finally, the organic layer was washed with water and dried over anhydrous sodium sulfate. The product was a white crystalline solid (yield 2.25 g , 89%), which was dissolved in ethyl acetate-methanol (3:1) and kept for 4 d . Upon slow evaporation of the solvent, white crystals of (I) developed (m.p. 442.15 K).

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	$Z=4$
$M_{r}=209.23$	$D_{x}=1.513 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{2} / c$	Mo $K \alpha$ radiation
$a=11.395(14) \AA$	$\mu=0.33 \mathrm{~mm}^{-1}$
$b=5.045(3) \AA$	$T=295(2) \mathrm{K}$
$c=17.698(19) \AA$	Block, white
$\beta=115.445(3)^{\circ}$	$0.25 \times 0.20 \times 0.20 \mathrm{~mm}$
$V=918.7(16) \AA^{3}$	

Data collection

MacScience DIPLabo 32001 diffractometer
ω scans
Absorption correction: none
2728 measured reflections

Refinement

Refinement on F^{2}

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0688 P)^{2}\right.
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.125$
$S=1.06$
1535 reflections
128 parameters
H -atom parameters constrained

1535 independent reflections 1284 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.018$
$\theta_{\text {max }}=25.0^{\circ}$
$\quad+0.33 P]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=0.23 \mathrm{e}^{\circ}{ }^{-3}$
$\Delta \rho_{\min }=-0.32 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: SHELXL97 Extinction coefficient: 0.038 (5)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S6-O7	$1.413(3)$	$\mathrm{N} 1-\mathrm{C} 5$	$1.346(4)$
S6-O8	$1.422(3)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.307(4)$
S6-N1	$1.699(3)$	$\mathrm{N} 4-\mathrm{C} 3$	$1.347(5)$
S6-C9	$1.741(3)$	$\mathrm{N} 4-\mathrm{C} 5$	$1.299(4)$
N1-N2	$1.361(3)$		
O7-S6-O8	$121.63(11)$	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 5$	$109.50(19)$
O7-S6-N1	$105.7((11)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3$	$101.2(2)$
O7-S6-C9	$110.69(12)$	$\mathrm{C} 3-\mathrm{N} 4-\mathrm{C} 5$	$102.6(2)$
O8-S6-N1	$103.42(11)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 4$	$116.3(3)$
O8-S6-C9	$109.69(11)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 4$	$110.4(2)$
N1-S6-C9	$103.85(10)$	$\mathrm{S} 6-\mathrm{C} 9-\mathrm{C} 10$	$119.12(19)$
S6-N1-N2	$122.01(17)$	$\mathrm{S} 6-\mathrm{C} 9-\mathrm{C} 14$	$119.47(18)$
S6-N1-C5	$128.08(17)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C3-H3 $\cdots \mathrm{N}^{\mathrm{i}}$	0.93	2.55	$3.425(6)$	157
C5-H5 O^{ii}	0.93	2.38	$3.296(5)$	169
C12-H12 $\cdots \mathrm{N}^{\mathrm{iii}}$	0.93	2.57	$3.490(6)$	169
Symmetry codes:	(i)	$-x+1, y-\frac{1}{2},-z+\frac{3}{2} ;$	(ii)	$-x,-y+1,-z+1 ;$
$x,-y-\frac{1}{2}, z-\frac{1}{2}$.				

Abstract

H atoms were placed at idealized positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom).

Data collection: XPRESS (MacScience, 2002); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEPII (Johnson, 1976); software used to prepare material for publication: PLATON.

The authors are grateful to DST-CSIR, New Delhi for financial support under the projects SP/I2/FOO/93 and 01(1904)/03/EMR-II 2004. Analytical and IR spectroscopic data were obtained from instruments funded by DST-FIST and UGC-SAP (phase I).

organic papers

References

Al-Soud, Y. A., Al-Dweri, M. N. \& Al-Masoudi, N. A. (2004). Il Farmaco, 59, 775-783.
Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley.
Boschelli, D. H., Connor, D. T., Bornemeier, D. A., Dyer, R. D., Kennedy, J. A., Kuipers, P. J., Okonkwo, G. C., Schrier, D. J. \& Wright, C. D. (1993). J. Med. Chem. 36, 1802-1810.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: © 2006 International Union of Crystallography All rights reserved

